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Abstract. The thermodynamics of two-phase coherent equilibrium is analysed in the case of a
phase transition without change of composition. The elastic contribution to the Gibbs free energy
associated with a distortion of the matrix of the parent phase due to the transformation misfit
strain is considered. The phase transition from the parent to the product phase is studied using
Landau theory, with the transition volume change being coupled with the phenomenological
order parameter. The minimization of the free energy with respect to the volume change and
order parameter gives the dependence of the Gibbs energy on the volume fraction of the product
phase. The transformation proceeds in a finite-temperature region with the equilibrium volume
fraction depending on temperature rather than at a fixed temperature as would be expected from
the Gibbs phase rule for the first-order transition.

1. Introduction

Spontaneous strain is known to play an important role in many cases of the phase
transformations in solids [1, 2]. Due to the difference in crystalline structures and elastic
properties of the parent and product phases the misfit strain is known to appear in a two-phase
microstructure. Associated displacement fields in the inclusion and matrix tend to relax this
misfit at the cost of an additional elastic energy [3]. The minimization of this elastic energy
defines the shape and crystallographic orientation of the particles of the new phase [4]. The
elastic effects change the phase diagram of heterophase systems qualitatively and the phase
rule is no longer valid since it does not take into account the elastic interaction between the
phases which coexist in a state of coherent equilibrium [5]. It has also been shown that the
‘chemical’ free energy alone cannot determine the equilibrium fractions of the phases with
different compositions through the well-known double-tangent construction [6, 7] applied
to the temperature–composition phase diagram.

For a single-component system the Gibbs rule implies that the two-phase equilibrium
is possible only at a single temperature point. The same should be true for the phase
transitions of fixed-composition compounds and of alloys with very slow diffusion kinetics
which could be considered as systems with constant composition. In the present paper we
show that elastic coherence strain in such a case results in a finite temperature interval
of phase coexistence with equilibrium phase fractions depending on the temperature. We
consider the first-order solid-state phase transition within the Landau theory and assume
that the volume change can be analysed as a secondary order parameter. This leads to a
self-consistent treatment of the coherence stresses which on the one hand are caused by
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the transition and on the other hand play the role of an external pressure for this phase
transition.

A standard approach [3] to elastic effects is to let the transformation proceed in an
inclusion disconnected from the matrix, to allow the ‘zero-stress’ transformation strain
tensor to appear, and then to bring the inclusion into elastic coherent contact with the
surrounding matrix. The strain energy is then calculated using the disconnected inclusion
as an elastic reference state for the product phase. Though the new phase is sometimes
considered to have different elastic moduli, calculations are mostly being done within linear
elasticity theory. However, a strain field in the matrix gives rise to an effective pressure
felt by the inclusion. Hence, when the transformation is sensitive to an applied external
pressure, the ‘zero-stress’ assumption is no longer valid, and a self-consistent treatment
involving non-linear dependence of the free energy of the new phase on the stress level is
necessary.

The simplest possible way of analysing the transition strain is to use the Landau theory
of phase transitions [8, 9] taking into account the coupling of the phenomenological order
parameter with the strain tensor components. This coupling appears naturally, e.g., in the
case of a proper ferroelastic (martensitic) phase transition [10] where the elastic energy
expansion contains terms of different degrees composed from the products of the shear and
volumetric strain. Such a coupling has been recently considered for transitions in cubic
crystals [11] and the effects of the hydrostatic and uniaxial pressure have been studied. In
the present paper I consider the elastic interaction in a heterophase system for the model
case of spherical inclusions of the product phase embedded into an isotropic elastic matrix
of the parent phase. The quadratic coupling of the order parameter with the volume change
that corresponds to a variety of systems (see e.g. [12]) is analysed.

The remainder of this paper is organized as follows. We begin with a linear elasticity
analysis of the displacement field and the elastic energy associated with the volume change
in an inclusion embedded into the isotropic matrix. Then the free-energy difference between
the infinite bulk crystals of the parent and product phases is considered within Landau theory
and the coupling of the phenomenological order parameter with the elastic strain is taken
into account. The energy cost of the formation of a finite fraction of new phase as inclusions
inside the bulk crystal of the parent phase is then considered. After minimization of this
free energy with respect to a volumetric strain, the resulting expression that depends on the
volume fraction of the new phase is analysed. Then the transformation kinetics including
fluctuations is briefly discussed.

2. Elastic energy associated with a misfit strain

Let us start with the spherical inclusion in an isotropic matrix and consider the bulk crystal
of the parent phase as a reference state for the calculation of the elastic energy. The radial
displacement fieldu(r) appears due to the transformation misfit and it has the following
form determined by the elastic equilibrium conditions [13]:

u(r) =

a1r for r 6 R

a2r + b2

r2
for R < r 6 R0.

HereR is the inclusion radius andR0 = R/ 3
√
ν is the radius of the spherical domain of

the parent phase attributed to the inclusion withν being the volume fraction of the new
phase. This association of the matrix domains with the particles of a new phase is used in a
similar way to analyse the precipitate coarsening [14]. Boundary conditions for this elastic
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problem are determined by the system geometry. The first boundary condition states that
the displacement field vanishes atR0, and the continuity of the displacement field across
the interface implies the second boundary condition. Hence, one can get

a1 = ε0

3
a2 = ε0

3

ν

ν − 1
b2 = ε0

3

R3

1− ν
whereε0 = Tr(ε̂) is a volumetric strain inside the inclusion.

The elastic energy associated with the matrix strain and expressed per unit volume of
the newphase is given by an expression

1G(m)el =
K0

2
ε2

0
ν + γ
1− ν

whereγ = (4µ0)/(3K0) is the renormalized ratio of elastic moduli of the parent phase.
This energy corresponds to the stress that plays a role of the external pressure applied to
the inclusion undergoing phase transition.

The pure elastic energy (per unit volume of the new phase) associated with volumetric
strain inside the inclusion is

1G(i)el =
K0

2
ε2

0.

The total elastic energy that has to be added to the difference in Gibbs energy between
the phases is equal to

1Gel(ε0) = 1G(i)el +1G(m)el =
K0

2
ε2

0
1+ γ
1− ν . (1)

This expression is valid for a sufficiently smallν when the inclusions of the product phase
are well separated and the overlapping of associated spherical domains of the parent phase
can be neglected.

3. Landau theory

The difference in free energy between bulk crystals of the parent and product phases which
are related by the symmetry-breaking phase transition can be expanded in the mean-field
Landau theory [8] in powers of the ‘order parameter’η. The theory was initially developed
for the second-order transition whereη is continuous at the transition point; however, first-
order transitions satisfying the symmetry conditions can be considered as well. We will
briefly outline here the Landau theory of the first-order transition; more details can be
found elsewhere [9].

3.1. Ginzburg–Landau expansion of the free energy

If the symmetry groups of both the parent and product phases are knowna priori then the
we can choose one domain orientation and use the scalar order parameter. The Ginzburg–
Landau expansion of the difference in free energy per unit of volume has the general
form [8, 9]

1GGL(T , η) = a

2
(T − Tc)η2+ B

3
η3+ C

4
η4 (2)

whereTc is a critical temperature. It is assumed that only the second-degree coefficient
depends on temperature, and the equilibrium value ofη is determined by the minimization
of 1G. Stability requires the highest-order coefficientC to be positive and the third-degree
termB 6= 0 implies that the transition is of first order.
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The Gibbs free energy (2) has two possible minima. One withη = 0 corresponds to a
high-temperature undistorted phase stable forT > Tc. Another minimum with

η = − B
2C

(
1+

(
T0− T
T0− Tc

)1/2)
(3)

corresponds to a low-symmetry distorted phase which exists for

T 6 T0 = Tc + 1

4

B2

aC
.

The phase energies become equal at the temperature of the first-order transition

T∗ = Tc + 2

9

B2

aC

where the order parameter jumps from theη = 0 to

η = −2

3

B

C
(4)

overcoming the activation energy barrier

1Gb = 1

324

B4

C3
.

3.2. The volume effect in the free-energy expansion

To analyse an associated strain effect, the coupling ofη with the homogeneous strain tensor
ε̂ has to be considered and the Ginzburg–Landau expansion should include elastic terms (1).
In the simplest case the symmetry allows the volumetric strainε0 = Tr(ε̂) to be coupled
with η in the lowest order by the following term:

1Gint (ε0, η) = D0ε0η
2. (5)

Adding this term to the elastic energy (1) and finding the minimum of the resulting
expression with respect toε0, we obtain the dependence of the volumetric strain inside
the inclusion on the phenomenological order parameter in the form

ε0(η) = −D0

K0
η2 1− ν

1+ γ . (6)

This leads to a renormalized Ginzburg–Landau expansion of1G in powers ofη [11]:

1G(T , η) = 1GGL(T , η)+1Gel(ε0(η))+1Gint (ε0(η), η)

= a

2
(T − Tc)η2+ B

3
η3+ C

4
η4

(
1− 2D2

0

K0C

1− ν
1+ γ

)
. (7)

4. Analysis of the total free energy

We have to consider a difference in Gibbs free energy between the two-phase configuration
and the pure unstrained parent phase as the reference state of a system. Thus, the energy
cost for the formation of the new phase (7) should be multiplied by its volume fractionν.
Choosing the case ofB < 0 which implies a positiveη in the product phase, we can finally
write the expansion of the total free energy per unitsystemvolume in the following form:

1G̃ = C3

B4
1G = ν

(
τ

2
ζ 2− ζ

3

3
+ ζ

4

4

(
1− ψ(1− ν)

1+ γ
))

(8)
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Figure 1. The dependence of1G̃ on the order
parameterζ and the volume fraction of the
new phaseν.

with

η = −B
C
ζ τ = aC

B2
(T − Tc) ψ = 2D2

0

K0C
.

The dependence of1G̃ on ζ andν is shown in figure 1 for certain values ofτ , ψ andγ .
The state of equilibrium is now determined by the minimum of this free energy with

respect to bothζ andν:

∂1G̃
∂ζ
= 0 and

∂1G̃
∂ν
= 0 (9a)

∂21G̃
∂2ζ

+ ∂
21G̃
∂2ν

> 0 (9b)

∂21G̃
∂2ζ

∂21G̃
∂2ν

−
(
∂21G̃
∂ν ∂ζ

)2

> 0. (9c)

There is a trivial solutionζ = 0 of coupled equations (9a) which corresponds to the
undistorted parent high-temperature phase. Since the fraction of second phaseν is confined
between 0 and 1, this pure high-symmetry state withν = 0 corresponds to a free-energy
minimum for

τ > τ∗ = 2

9

(
1+ ψ

1+ γ − ψ
)

(10)

even though it does not satisfy conditions (9a)–(9c).
For a two-phase configuration one can obtain the following expressions for the

equilibrium ζ andν:

ζ = 2

3

(
1+ ψ

1+ γ − ψ
)

(11a)

ν = 1+ γ − ψ
2ψ

− 9(1+ γ − ψ)2τ
4(1+ γ )ψ . (11b)

The stability conditions (9b) and (9c) are satisfied for theseζ andν in the temperature
rangeτ < τ∗. In theψ → 0 limit, τ∗ corresponds to the temperature of the first-order phase
transitionT∗ in the absence of stresses. An important difference from the Landau theory
description of the homogeneous first-order transition in section 3.1 consists of the fact that
the distorted low-symmetry phase no longer corresponds to the free-energy minimum above
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this temperature. It appears atτ∗ whereν = 0, and its volume fraction increases linearly
with the decrease of temperature according to (11b) up to ν = 1 at

τ1 = 2

9

(1+ γ )(1+ γ − 3ψ)

(1+ γ − ψ)2 .

The width of two-phase temperature interval is

1τ = 4

9

ψ(1+ γ )
(1+ γ − ψ)2 . (12)

The equilibrium value ofζ , equation (11a), does not depend on the dimensionless
temperatureτ , and approaches the discontinuity of the homogeneous order parameter (4)
for an equilibrium transition in theψ → 0 limit. This is in a sharp contrast with the
homogeneous transition where the order parameter undergoes continuous evolution in a
low-symmetry phase [11].

Figure 2. The free energy versus the phenomeno-
logical order parameterζ .

Figure 3. The dependence of1G̃ on the volume
fraction of the new phaseν. The equilibrium value
of ν for these values ofτ , ψ andγ is 0.117.

The energy dependence onζ is shown in figure 2 forτ < τ∗. It has a behaviour
typical for the system described by Ginzburg–Landau free-energy expansion (2). There is
an energy barrier separating the initialζ = 0 state and the product phase that corresponds
to a minimum of free energy forζ 6= 0. However, there is no barrier in the free-energy
dependence onν shown in figure 3. This is a quite natural consequence of the fact that
the free energy (8) is proportional to the phase fractionν. Since1G(T , η) given by (7) is
negative forτ < τ∗ the increase ofν would reduce the total energy for smallνs when the
elastic contribution (1) is small as well.
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Figure 4. The temperature dependence of the
equilibrium volume fraction of the new phaseν for
two different values of the ratio of elastic moduliγ .

5. Discussion

The classical phase rule allows the equilibrium coexistence of parent and product phases of
the same composition only at the fixed temperatureT∗. However, the phase rule is based on
the assumption that there is nolong-rangeinteraction, e.g. elastic, between the phases. The
finite equilibrium volume fraction of the second phaseν that corresponds to the minimal1G̃
in the present model appears in some temperature interval belowτ∗. It depends linearly on
the dimensionless temperatureτ according to equation (11b) which is illustrated in figure 4.
The width of the two-phase temperature interval (12) is proportional to the dimensionless
coupling parameterψ and vanishes whenψ → 0. Thus, elastic interaction between product
and parent phases is a reason for this deviation from the phase rule.

The orientational ordering transition in solid fullerene C60 is described by the Landau
theory with quadratic coupling (5) of the orientational order parameter with volumetric
strain [12], and, thus, the present model can undergo experimental checking in this case.
The finite temperature interval of an equilibrium coexistence of low- and high-temperature
phases was indeed found in a diffraction study of C60 [15]. The same symmetry breaking
and, hence, the same form of coupling appears in the first-order chemical ordering transition
in the intermetallic compounds with Cu3Au-type structure (L12) [16].

The order parameter of the low-symmetry phase continuously evolves with temperature
in the Landau theory of phase transitions [8, 9]. In sharp contrast with this result, the
distortion of the low-symmetry phase which is proportional to the order parameterζ does
not depend on the temperature in our model according to (11a). Thus, a proper account of
the elastic strain associated with the first-order transition implies the fixed structure of the
product phase, with a particular value of the distortion being determined by the coefficients
of the renormalized Ginzburg–Landau expansion of the free energy. Such a situation arises
for the FCC–BCC martensitic transition in pure Fe and some alloys, and could not be
adequately described by classical Landau theory (see [11] and references therein for further
details).

Our model apparently corresponds to the ‘athermal’ kind of martensitic transformation
in which the transformation begins at some starting temperatureMs , but the parent phase
still exists until the temperature goes down toMf , a martensite finishing point. No annealing
can change an equilibrium phase fraction at fixed temperature, and the system has to be
cooled down further to achieve the increase inν, i.e. for the transformation to proceed.
The finishing pointMf corresponds toν = 1, and the present model cannot be used in this
region because the inclusions of the new phase are thought to be well separated.

The martensite spontaneous strain, e.g. Bain strain, playing the role of the order
parameter for Landau theory is a shear [10], and the spherical shape of the new phase
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inclusion in our model implies that the transformation strain does not have shear components.
However, in many cases of martensitic phase transformations, microstructure with multiple
domains appears which has a lower elastic misfit energy [4]. After averaging over the
ensemble of twinned domains of different orientations composing the inclusion, the shear
components disappear and only volumetric misfit strain remains. Thus, our model might be
relevant for at least some cases of martensitic transformations.

The present model does not involve the interface energy, which is important at small
ν. It leads to the absence of a critical volume fraction that would correspond to a critical
nucleus in a classical nucleation theory [1]. The energy of the elastic coherent interface
can be estimated through the gradient terms in the elastic energy expansion for proper
ferroelastic (martensitic) phase transitions [10]. However, this interface energy is small in
comparison with the elastic energy associated with long-range accommodation strain and can
be neglected for finite volume fractionν. The experiments show that martensitic transitions
are characterized by easy nucleation and very small values of the possible supercooling.
So, classical nucleation theory is believed to be inapplicable in this case.

It is known that the order parameter fluctuations do not play a significant role for
the phase transitions associated with strain [17]. However, there is a possibility of
inhomogeneous distribution of the inclusion radius and, accordingly, of the volume fraction
ν of the product phase. In order to take this effect into account one has to consider
a free-energy functional involving non-local effects at least in a lowest-order gradient
approximation. Such an approach is obviously beyond the scope of our simplified model.
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